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Austria
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Abstract. Starting from an expression for the double-differential cross section for electron
Compton scattering in a crystal for a two-beam case, valid for a small Ewald sphere, the
contributions of M-shell and L-shell electrons in silicon to the mixed dynamic form factors are
calculated. The shape and intensity of the interference effects that superimpose on the Compton
profile are determined. It is shown that the appearance of interference terms renders the cross
section asymmetric and dependent on the momentum transfer also in the usual momentum
representation. A procedure for an experimental investigation of the interference terms is
proposed.

1. Introduction

In a Compton scattering experiment a probe particle, photon or electron, with momentum
h̄p0 and energyE0 hits a target electron with momentum ¯hp and is detected with the energy
E0 − 1E and change of momentum ¯hq. Using the equations of energy and momentum
conservation yields, for electrons as probes,

1E = h̄2

2me

(q2 + 2q · p) (1)

where the first contribution to the energy loss is due to the loss of momentum of the probe
in the scattering and the second contribution is a Doppler shift due to the motion of the
target before the scattering event. Thus, the energy loss is proportional to the projection of
the target momentum onto the direction of the momentum-transfer vector. So, the Compton
scattering distribution for fixedq as a function of1E monitors the momentum distribution
of the target, projected ontoq.

In a crystal, however, the momentum operator does not commute with the crystal
Hamiltonian, which excludes states being both momentum eigenstates and stationary. So,
the probe momentum before and after the scattering in the crystal is unknown, and (1) is
no longer valid. The incoming plane wave describing the probe electron in vacuum has to
be expanded as a sum of Bloch waves, the stationary electron states in the crystal potential.
For the scattered electron, we will neglect the influence of the crystal potential, here. Under
the experimental conditions to be discussed, it can be described by a plane wave. The fact
that the wave function of the incoming probe electron has to be written as a sum over Bloch

† Now at: Institut f̈ur Str̈omungslehre und Ẅarmëubertragung, Wiedner Hauptstraße 7, A-1040 Wien, Austria.
‡ Westf̈alische Wilhelms-Universität Münster, Physikalisches Institut, Wilhelm-Klemm-Straße, 10, D-48149
Münster, Germany.

0953-8984/96/162835+16$19.50c© 1996 IOP Publishing Ltd 2835



2836 A Exner et al

k
0 0

g

q
q+g

kf

k   +g

Figure 1. Bloch wave vectors and momentum transfer in a
symmetric two-beam case.

waves leads to the appearance of interference terms in the result. This modifies the form
of the double-differential cross section.

The expression for the double-differential cross section for inelastic electron scattering
in a crystal has been derived in a previous paper henceforth referred to as paper I (Exner
et al 1994). We will only give the result here. The double-differential cross section was
obtained on the assumption that the incoming probe electron, being in a plane-wave state
in vacuum, splits into a sum of Bloch waves in the crystal. In a two-beam case (Jonas and
Schattschneider 1993), the incoming electron with momentum ¯hki is described by a sum of
two Bloch waves (Reimer 1984) with Bloch wave vectorski andki + g with a reciprocal-
lattice vectorg which is the Bragg vector of the two-beam case. After the scattering, the
probe electron is detected in a plane-wave state with momentum ¯hkf (figure 1). Here, we
have made the approximation of a small Ewald sphere. In the case where this approximation
is not fulfilled the probe electron state in the crystal after the scattering is also a sum over
Bloch waves and the expression for the cross section becomes more complicated. This case
will not be part of this paper.

The calculation has been made using the impulse approximation (Eisenberger and
Platzman 1970, Schattschneideret al 1990), i.e. the energy loss of the probe substantially
exceeds the binding energy of the target electron.

In paper I, the interference term of 3s electrons was calculated analytically. It was
shown that this term is negligible for sufficiently high|g|. Here, we extend the calculations
to silicon p states and to L-shell electrons. We start from the expression for the cross section
∂2σ/∂� ∂E—equation (8) in paper I—and discuss both the direct and indirect terms for L-
and M-shell electrons. The K-shell electrons will not be treated in the calculation since their
ionization energy lies at 1840 eV whereas the typical energy losses in electron Compton
scattering are 1000–1300 eV. An experiment is proposed in which the indirect terms could
be measured. It is shown that the L-shell electrons contribute considerably to the indirect
term, in a way that masks the effect of the valence electrons.
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2. The double-differential cross section

The double-differential cross section for electron scattering in the two-beam case for the
conditions described above is (see equation (8) in paper I)

∂2σ

∂E ∂�
∝ SAt (q, q, E) − Kg

K0

w

1 + w2

(
1 − sinδ

δ

)
SAt (q, q + g, E) (2)

with the vector of momentum transfer ¯hq = h̄(ki − kf ) and the energy loss of the probe
electronE = h̄ω. The geometry of the experiment is chosen such thatq = |q + g|. Taking
account of the crystal symmetry, this implies thatSAt (q, q, ω) = SAt (q + g, q + g, ω). w

is the excitation error in units of the extinction distanceξg (Reimer 1984).δ is given as
δ = d(γ (1) − γ (2)) with the specimen thicknessd and theanpassungen(Reimer 1984)

γ (i) = π

ξg

[
w − (−1)i

√
1 + w2

]
.

The differenceγ (1) − γ (2) is the separation of the dispersion surfaces of the probe electron
in the crystal. The structure factorKg for silicon in a centrosymmetric description is
Kg = 2 cos

[
(π/4)(h + k + l)

]
where(hkl) are the Miller indices of the reciprocal-lattice

vectorg. The mixed dynamic form factor (MDFF)SAt (q, q′, ω) is defined as

SAt (q, q′, ω) =
∑

ν

∫
d3p ϕ̃∗

ν (p − q)ϕ̃ν(p − q′) δ

{
ω − h̄

2m

[
p(q + q′) − q2 + q ′2

2

]}
(3)

where ϕ̃ν(p) are atomic orbitals in the momentum representation and the sum is over all
occupied states.ν stands for the set of atomic quantum numbers(n, l, µ). The subscript
‘At’ denotes that (3) contains the atomic contribution to the scattering cross section (2). The
cross section (2) consists of a linear combination of two† MDFF. The first one is a direct
term, i.e. identical to the ordinary atomic structure factorS(q, E). The second, indirect
term is a consequence of interference between the two incident beams, set up by diffraction
in the crystal. The prefactor depends on the crystal orientation.

In the following, we will show how the MDFF can be calculated for analytically given
wave functions for silicon. Forq = q′ we call SAt (q, q′, ω) the direct MDFF; forq 6= q′

we call it the indirect MDFF. The MDFF were calculated from wave functions which have
been taken from a work of Duncanson and Coulson (1947). For the L shell (n = 2) and M
shell (n = 3) in reciprocal space they have the form

ϕ200(p) =
√

2c5
20

3π2

(6c2
20 − 2p2)

(c2
20 + p2)3

ϕ21µ(p) =
√

8c5
21

3π

8c21p

(c2
21 + p2)3

Pµ(ϑ, ϕ)

ϕ300(p) =
√

4c7
30

45π2
24c30

(c2
30 − p2)

(c2
30 + p2)4

ϕ31µ(p) =
√

16c7
31

45π
8p

(5c2
31 − p2)

(c2
31 + p2)4

Pµ(ϑ, ϕ)

(4)

† Originally, there are three terms, namely including a second direct termSAt (q + g, q + g, ω), which was set
equal to the first direct term for reasons explained above. Those two terms are also expected in the kinematic
case, i.e. when two beams are incident in directions0 andg.
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(a)

(b)

Figure 2. Contributions to the direct MDFF×1015 of the L-shell electrons withl = 0 (a) and
l = 1, µ = x (b), µ = y (c), andµ = z (d), and of the M-shell electrons withl = 0 (e) and
l = 1, µ = x (f ), µ = y (g), andµ = z (h).

where the quantum numberµ stands for directions of the angular momentum (x, y, z) and
the real-valued combinationsPxi

(�) of the spherical harmonicsY 1
1 (�), Y 0

1 (�), Y−1
1 (�) are

given by

Px(ϑ, ϕ) = sinϑ cosϕ
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(c)

(d)

Figure 2. (Continued)

Py(ϑ, ϕ) = sinϑ sinϕ (5)

Pz(ϑ, ϕ) = cosϑ.

Note thatµ should not be mixed up with the usual magnetic quantum numberm.
The parameterscnl depend on the screening constantσnl via the relation cnl =

(Z − σnl)/n with the atomic numberZ (Z = 14 for silicon). The values forcnl were
obtained by comparing the Compton profiles of the orbitals (4) to the Compton profiles
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(e)

(f)

Figure 2. (Continued)

calculated by Biggset al (1975) for Hartree–Fock wave functions. The parameters and
corresponding screening constants are given in table 1.
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(g)

(h)

Figure 2. (Continued)

3. Direct and indirect mixed dynamic form factors

The direct MDFF can be calculated analytically from (3) for the wave functions (4) by
performing elementary integrations. We will give only the main features of the calculation
and discuss the physical contents of the MDFF.
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Table 1. cnl in atomic units and related screening constantsσnl .

n cn0 cn1 σn0 σn1

2 4.40 4.45 5.20 5.10
3 1.58 1.23 9.25 10.31

We setq = q′ in (3), transform the coordinates usingξ = p − q, and get

SAt (q, q, ω) = m

h̄q

∑
ν

∫
d3ξ |ϕ̃ν(ξ)|2 δ(ξz − ξ

(d)

z0 )

h̄ξ
(d)

z0 := m

h̄q

(
h̄ω − h̄2q2

2m

) (6)

where we have chosen thez-axis parallel toq. The expression in parentheses in the definition
of the momentumz-coordinate ¯hξ

(d)

z0 is the difference between the energy loss of the probe
electron and the kinetic energy the target electron would have acquired if it were at rest
before the scattering event. The index (d) indicates thatξ

(d)

z0 is a parameter appearing in the
direct MDFF. The integral in (6) is the contribution of the orbital with the quantum numbers
ν to the Compton profile (Jonas and Schattschneider 1993) and the energy of the Compton
maximum is defined byξ (d)

z0 (ωmax, q) = 0, i.e. h̄ωmax = h̄2q2/2m. Since theϕ̃ν(p) that we
used are either symmetric or antisymmetric functions of any of their Cartesian coordinates
(px, py, pz) the square is symmetric with respect toξz = 0, and the MDFF which is a
function of ξ

(d)

z0 (ω, q) is symmetric with respect to the Compton maximumξ (d)

z0 = 0 as it
has to be for a Compton profile.

Figure 3. The direct MDFF×1015 or the Compton profile. The dashed curve shows the
contribution of L-shell electrons.

In figure 2 the contributions of the occupied L-shell and M-shell electron states in silicon
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to the MDFF are given in a momentum representation. Figure 3 shows the Compton profile
(6) with the contribution of all L-shell electrons given as a dashed curve.

(a)

(b)

Figure 4. Contributions to the indirect MDFF×1015 for q = 150 nm−1 andg = (220) of the
L-shell electrons withl = 0 (a) andl = 1, µ = x (b), µ = y (c), andµ = z (d), and of the
M-shell electrons withl = 0 (e) andl = 1, µ = x (f ), µ = y (g), andµ = z (h).

For the indirect MDFF, the change of coordinates and the transformation of theδ-
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(c)

(d)

Figure 4. (Continued)

function lead to

SAt (q, q′, ω) = 2m

h̄|q + q′|
∑

ν

∫
d3ξ ϕ̃∗

ν (ξ)ϕ̃ν(ξ + g) δ(ξz − ξ
(i)

z0 )

h̄ξ
(i)

z0 := 2m

h̄|q + q′|
(
h̄ω − h̄2q2

2m
− h̄2q · g

2m

)
.

(7)
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(e)

(f)

Figure 4. (Continued)

Since we are discussing the case whereq = |q · g|, ξ
(i)

z0 can be written as (see figure 1)

h̄ξ
(i)

z0 = 2m

h̄|q + q′|
(
h̄ω − h̄2q2

2m
+ h̄2g2

4m

)
. (8)

By comparison withξ (d)

z0 (equation (6)) we find that the energy ¯hω0 with ξ
(i)

z0 (ω0) = 0 is
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(g)

(h)

Figure 4. (Continued)

shifted† from the Compton maximumξ (d)

z0 = 0 towards lower energies by ¯h2g2/4m. This
shift depends only on the Bragg vectorg that causes the interference term and not on the
momentum transfer. As can be seen from figure 4,ξ

(i)

z0 = 0 is also a point of symmetry.
This may equally be deduced from (4).

† This energy shift, although not visible at first glance, also appears in the nondiagonal Compton profiles given
by Scḧulke and Mourikis (1986).
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The additional energy shift of the indirect MDFF has two important consequences for
the double-differential cross section. Firstly, since the cross section consists of a weighted
sum of two symmetric functions each with a single point of symmetry, shifted against each
other, the result is no longer symmetric with respect to any energy value. Secondly, the
additional energy shift of the indirect MDFF is independent of the momentum transfer ¯hq
and is constant for a giveng. This means that the cross section, measured for differentq
as a function of energy loss, is no longer independent ofq when represented as a function
of

h̄ξ
(d)

z0 = m

h̄q

(
h̄ω − h̄2q2

2m

)
i.e. of target momentum.

The contributions of the atomic orbitals to the indirect MDFF have been calculated
numerically using a Simpson algorithm (Presset al 1986)†. They are given for three
different Bragg vectors (220), (440), and (660) in figure 4. Thex-axis was chosen to be
parallel tog. The main features of the results can be explained by the fact that the indirect
MDFF are overlap integrals of a wave function centred atξ with the same wave function
centred atξ + g. The biggerg, the smaller the overlap, and the results show that the
intensity of the MDFF decreases with increasing Bragg vector. Since the L-shell electrons
are more strongly localized in space than the M-shell electrons, the L-shell wave functions
are broader in reciprocal space and so the overlap is stronger for L-shell electrons. All
orbitals with m = z vanish in the planeξz = 0, i.e. for ξz0 = 0 the contribution to the
MDFF has a minimum with value 0. The additional energy shift for the indirect MDFF
can be excellently observed in the position of this point, which is drifting to the left with
increasingg. The indirect MDFF, unlike the direct MDFF, can have negative intensity,
which for m = x is caused by the angular part of the wave functions‡ and for l = 0 or
n = 3 by a change in sign of the radial parts§. The momentum for which this change in
sign occurs depends on the parameterscnl and therefore on the effective nuclear charge that
the electron with quantum numbersn, l sees.

The results of the present numerical integration coincide excellently with the analytical
results obtained in paper I. Differences between the analytically and numerically calculated
functions could not be detected within the accuracy of our calculations. The indirect MDFF
that are obtained by adding the contributions of all of the orbitals are displayed in figure 5,
(a)–(c). The contribution of all of the L-shell electrons is shown as a dashed curve.

4. The influence of the indirect MDFF

For q = |q + g|, the double-differential cross section simplifies to the expression given in
(2). It is the sum of the Compton profileSAt (q, q, ω) and the product of the interference
term with a function which depends on the excitation errorw and viaδ on the specimen
thicknessd. For specimen thicknessesd = 0.5ξg andd = 0.7ξg this function is shown in
figure 6. From (2) and figure 6 one can see how the indirect MDFF can be made visible
in the experiment. If the double-differential cross section is measured for two different
excitation errorsw1 andw2, preferably with opposite sign, then the indirect MDFF can be
extracted from the experimental data by simply subtracting the two spectra from each other.

† The MDFF can be calculated for all Bragg vectors for silicon. The computer program is available on request.
‡ Though for the L shell and smallg this effect is compensated by the radial parts.
§ Compare also the change in sign of the indirect MDFF for 3s electrons in paper I for growingg.
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(a)

(b)

(c)

Figure 5. The indirect MDFF×1015 for q = 150 nm−1 andg = (220) (a), g = (440) (b), and
g = (660) (c). The contribution of the L-shell electrons alone is shown as a dashed line.
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Figure 6. The w-dependence of the interference contribution to the double-differential cross
section for specimen thicknessesd = 0.5ξg andd = 0.7ξg .

The relative intensity of the result compared to the direct MDFF depends on thew chosen,
on the specimen thickness and on the Bragg vector of the two-beam case.

The indirect MDFF was measured in an ingenious Compton scattering experiment
(Scḧulke and Mourikis 1986) and recently with synchrotron radiation (Spiertzet al 1994).
The equations are more complicated in the photon case, due to polarization; unlike for
electron Compton scattering, macroscopic specimens are needed.

The maximal difference is reached forw1,2 = ±1 and

d

ξg

= 1√
2π

tan

(
π

√
2

d

ξg

)
.

An approximate solution for the second condition is

d

ξg

= 2n − 1

2
√

2
n ∈ N.

For w1 = 1, w2 = −1 and d = ξg the difference of the two spectra (2) gives
1.2(Kg/K0)SAt (q, q + g, ω). The intensity of the strongest indirect MDFF given above,
g = (220), is about>10% of the intensity of the direct MDFF. This effect comes mainly
from the L-shell electrons. Often, though, one is interested only in the contribution of the
valence electrons. In this case, the maximal effect is only about 6%. The effect is strongly
decreasing with increasingg.

5. Conclusions

Interference effects have a significant influence on Compton scattering in a crystal when
low-indexed Bragg reflexes are involved. The interference terms in the double-differential
cross section can be interpreted as overlap integrals of the atomic orbitals in reciprocal
space. The stronger effects come from the inner-shell electrons because of their stronger
localization in space. The shape of the cross section, though, is more strongly influenced
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by the interference terms of the valence electrons. An additional energy shift of the point
of symmetry of the interference terms with respect to the Compton maximum breaks the
symmetry of the cross section. It should be mentioned once more that the above calculations
were made on the assumption of a small Ewald sphere. For the more general case, the
interference effects become stronger and more complicated. We have also investigated this
case and it will be the subject of a forthcoming paper.
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